

NEW FT/IR Spectra Manager 2 中文操作手册

Spectra Manager 2

🖉 Spectra Manager		
Program Application <u>V</u> iew <u>H</u> elp		
Instrument JASCO IR Validation Analysis JASCO Canvas Spectra Analysis	 <i>ি</i> ● ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
	Inforamtion History	
Ready		.:

圖示: Spectra Manager 2 主畫面

左邊視窗有圖譜測量及圖譜分析兩項,每測量一次,電腦會將測量結果直接 匯集到圖譜分析中去作分析,另外亦可由圖譜分析直接開啟圖檔作圖譜分析

量测流程:

PART I

Spectra Measurement 圖譜測量

A <u>啟動程式</u>

開啟主機電源後,由電腦程式集中啟動 spectra manager 2

🧬 Spectra Manager		
<u>P</u> rogram <u>Application ⊻i</u> ew <u>H</u> elp		
 Instrument Instrument Spectra Measurement Validation Analysis IASCO Canvas Spectra Analysis 	 · ● 真面 · ● ● · ● · ●	
	Inforamtion History	
Ready		.::

主畫面選擇右邊視窗之 Spectra measurement 選項進入 Spectra measurement 畫面 如下圖所示:

🙀 Spectra measurement - JASCO FTIR/Cl	2961786		
<u>File Measure Settings View H</u> elp			
🗉 🐷 🗊 💿 🕨 🛼 🌉	; 5 \$; 5 \$ \$ • • • • • • • • • • • • • • • • •		
Information Bar _ & 🗆 ×	F 🖈 H, 🖫 🖫 🐷 🔟 💭 📟 🦋	Change the layout	Zoom Bar _ æ □ ×
Set the sample and click [Start] button	100		
Sample massurement	-		
Sample measurement	80 -		
Cand the date	-		
Send the data	60 -		
End			
Enu	%T		
	40 -		
000000000000000000000000000000000000000	-		
	20 -		
	-		
000000000000000000000000000000000000000			
Sequence Information	4000 3000	2000 1000 400	
	wavenume	ier [cm-1]	
		Thomband Ba	

點選 Change the layout → standard 讓版面比較精簡化(左邊為參數;右邊 為圖譜顯示區),如下圖所示:

🙀 Spectra measurement - JA	SCO FTIR/C00296	51786								- 7 🛛
<u>File M</u> easure <u>S</u> ettings <u>V</u> iew	<u>H</u> elp									
) , 		学 日本 同一	- 🕠 🕻	- L. Q 🔚	P	-			
Information Bar	_ # 0	×			70 🛄 🏧 🐐		Standard			-
Item	Information	<u> </u>	, -				Standard + Thumhnail			
🖃 🥔 JASCO FTIR	idle		100							
Model	FT/IR-4600typeA						Full Function			
1234 Serial No.	C002961786						Functional Group			
Parameters			-			-	Onick Start			
🖹 Scan Range	7800-350cm-1						Quarsian			
Accumulation	8						Result View			
Resolution	4cm-1		80 -				OC Analysis			
📄 VerticalAxis(Sm	%T					_	Q			
VerticalAxis(Bkg)	Single									
E) Gain	Auto									
Aperture .	Auto									
Scan Speed	Auto									
Filter	Auto									
Apodization	Cosine	_	60							
E ZeroFilling	ON	-								
Source	Standard									
👸 Detector	TGS		%т							
E 📿 Accessory	No accessory									
1234 Serial No.										
E Sequence			4n –							
Quick Start	OFF									
Noise Elimination	OFF									
H2O Reduction	OFF									
CO2 Reduction	OFF									
Auto Baseline C	OFF									
Smoothing	OFF									
ATR Correction	OFF		20							
K/M Conversion	OFF									
A Unit Conversi	OFF									
Arithmetic	OFF		-							
Subtraction	OFF									
Peak Find	OFF									
Peak Height	OFF	~	0							
Seguence Information	OFF	-	4000		3000			2000	1000	400
ned course innormation	vvavenumber [cm+1]									
										NUM
🛃 開始 🔒 🤷 Analyz	eIt IR 🔂 🔁 W	indow	s 🔸 👿 FTIR S	SOP-Sp	🚰 Spectra Mana		🍂 Spectra measu	🦉 Change the la	Сн 🖮 🙎 🅄 🄇	🥵 下午 04:14

B <u>参數設定</u>

- 由 開啟預覽背景圖譜畫面,右方視窗可設定參數,主要有4個項目:
 - (1) Standard 量測參數設定
 - (2) Optics 光學系統設定
 - (3) FFT/Time 傅立葉轉換設定
 - (4) Sequence 操作系統設定

- 各項參數詳述如後。
 - (1) Standard 量測參數設定

- Number of Scan :圖譜掃瞄次數,使用者可自行設定 (1-32000),亦可由 Auto 選項讓儀器自行判斷
- ▶ Resolution: 光學解析度 (1-16cm⁻¹),預設值為 4 cm⁻¹
- ▶ Range :圖譜測量範圍
- ▶ Sample: 樣品測量模式 (穿透率%T、吸光度 Abs、反射率%R...)
- ▶ Background:背景測量模式 (single、穿透率%T、吸光度 Abs、反射率%R...)

(2) Optics 光學系統設定

- ➢ Source:光源,原為 Standard
- ▶ Detector: 偵檢器選擇,標準為TGS
- ▶ Sample chamber:樣品槽,原設定為 Standard
- ➢ Gain:訊號倍增值(訊號可放大1-1024倍),一般選擇 Auto 由光譜儀自動 判定
- Scan speed:掃瞄速度(干涉儀移動鏡移動速率)一般選擇 Auto 由光譜儀自動判定
- ▶ Filter:檢知器訊號輸出頻率,一般選擇 Auto 由光譜儀自動判定

(3) FFT/Time 傅立葉轉換設定

傅立葉參數設定因使用者甚少使用此參數設定,在此不予略過討論.

操作數據系統設定因之後會再分析程式中處理數據,在此不予略過討論

C 樣品測量

(1) 直接測量:

步驟一: 背景圖譜直接測量

由 建入背景圖譜直接測量

(2) 預覽測量:

步驟一: 背景圖譜測量

若使用者欲測試樣品圖譜,可由 建入背景圖譜測量,如下圖所示:

其中:

右圖為圖譜參數設定

左圖為預視圖譜

使用者必需先設定完圖譜參數設定後才會作圖譜掃瞄

步驟二: 樣品圖譜測量

若使用者欲測試量樣品圖譜, 可由→→進入圖譜測量,如同背景圖譜測量,使用者必先設定完圖譜參數設定後才會作圖譜掃瞄

備註: 背景預視圖譜中能量值 (Energy)的高低代表 FT/IR 光學系統 及圖譜解析度的好壞,能量值愈高則光學系統及圖譜解析度 愈好,能量值愈低則光學系統及圖譜解析度愈差,當能量值 降至 12000×1 時,表示光學系統須維修及校正。

PART II Spectra Analysis 圖譜分析

A <u>啟動程式</u>

當樣品測量完成後,圖譜應可自動傳送至 Spectra Analysis;或使用者可由 spectra manager 2 左方程式選取 Spectra Analysis 後開啟

如上圖所示,圖譜分析 (Spectra Analysis)主要可分為兩大部份,一為檔案管理部份,另一為圖譜處理部份

FILE

檔案管理

File 主要目的是檔案處理,其項目包括

開啟檔案 (Open)

疊圖 (overlay)

關閉檔案 (Close)

儲存檔案 (save)

另存新檔 (save as)

如下圖,File(檔案處理)可分為下列幾個部份:Open(開啟檔案)、overlay(疊圖), Close(關檔)、save(儲存檔案)、save as(另存新檔)

Open (開啟檔案)

由 【File】→→【Open】進入開啟檔案畫面,如下圖所示

Open Data			? 🔀
搜尋位置(I):	🚞 samples	GAL	ه
fftfilt.jws holmium2.j polystyr.jws pvc.jws pvcmbs.jws rf-kk.jws	ws s		
檔案名稱(N):	6		開啓(0)
檔案類型(I):	Standard Files (*.jws)	·	取消
	Multi View		

Overlay (疊圖)

疊圖模式主要是用來比較不同圖譜之差異情況使用方式如下

Step1: 開啟一圖檔,如下圖所示

Step2: 由 【File】→→【overlay】進入疊圖畫面,如下圖所示

EDIT

檔案編輯

Edit 主要的目的是將開啟的圖譜複製到剪貼簿 其項目包括

圖譜複製成 GIF 檔 (Copy Picture)

圖譜複製成 BMP 檔 (Copy Bitmap)

如下圖所示,Edit (檔案編輯)主要的目的是將開啟的圖譜複製到剪貼簿中

Copy Picture (圖譜複製成 GIF 檔)

操作範例:

將已開啟之圖譜複製到文書處理系統 (Word 2000)

Step 1: 由【Edit】 → 【Copy Picture】, 如下圖所示

國 文件2 - Mi	crosoft Word						
檔案(日) 續	隆臣 被親田	插入① 格式	(2) 工具(1) 書	(格仏) 親審(型)	院明(H)	輸入電源解答的問題	- ×
	3 5 6 0	🍼 🕺 📾	B	🝓 🔌 新細明體	- 12	• B / U •	A A ≅ "
12 -		- 1/2 p -	<u>/</u> - 🗇 - 🖄 -	□ •■■ E	5• 3E H 🖄	.	
- A 121 1	41 161 181	1101 1121 114	1 151 151 120	1 1221 1241 1261	1281 1301 1321	1342 1361 1381 140	1 142
F							
■ 9 8 3 4 神岡(2) • ↓	快取圖案①・	1.00) M M 4 *	0 6 0 - 2	· <u>·</u> · = =	≓∎₽.)
頁1 前1	1/1	於 2.5cm	行1 欄1	REC TRE EXT	OVE 中交(台湾)	Gar	

Step 2: 開啟 Word 2000 並開啟一新文件檔,如下圖所示

VIEW

圖譜檢視

View 主要功能是編輯圖譜之檢視模式,如圖形坐標 軸規格大小、圖譜顏色、格線....

其項目包括

坐標軸規格(Scale)

形式编輯(Pattern)

格線(Grid)

如下圖所示, View 主要功能是編輯圖譜之觀看模式, 如圖形坐標軸規格大 小、圖譜顏色、格線.....

Scale (坐標軸規格)

由【View】 → 【Scale】修改 X、Y 坐標軸規格,如下圖所示

圖示:修改後X軸坐標 400~3000 cm⁻¹

Pattern (形式编輯)

由【View】→【Pattern】可修改圖譜線條粗細,顏色樣式..等,如下圖所示:

其中

Item: 所開啟之光譜圖 (一般光譜圖為 spectrum 1, 若有疊 圖則依序為 spectrum2, spectrum3....)

Line style:光譜圖線條形式 (如實線、虛線....)

Line width: 光譜圖線條粗細

Sample: 光譜圖線條預視圖

As default:將所編輯之光譜圖線條規格設為預設值

操作範例:

將圖譜的線條透過 Pattern (形式編輯)由實線改成虛線

- Step 1: 進入【Edit】 → 【Pattern】
- Step 2: 於 Line Style 點選虛線,此時於 Sample 中可看到預視線條如下圖所示

Patterns			×
<u>l</u> tem :	Spectrum 1	~ (ОК
Line ——		(Cancel
<u>C</u> olor :	•••••••••••••••••••••••••••••••••••••	Sample	
<u>L</u> ine style :			
Line <u>w</u> idth		Set <u>a</u> s d	efault

Step 3: 當線條選擇沒有問題, 按 OK 鍵可得完成圖譜, 如下所示:

Grid (格線)

由【View】→【Grid】可於圖譜中加入格線線條粗細,如下圖所示

圖示: 格線完成圖

PROCESSING 波峰處理

Processing 主要目的是分析圖譜,其項目包括

圖譜校正(Correction)

圖譜運算(Operation)

波峰分析(Peak Process)

圖譜相減(Subtraction)

單位轉換 (Y Unit Conversion)

圖譜校正(Correction)

Baseline (基準線設定) Smoothing (圖譜平滑設定) Noise Elimination (雜訊消除設定) Deconvolution (波峰解析設定)

Baseline (基準線設定)

Baseline 的目的主要設定光譜圖之基準線,如下圖(A)所示,因為圖譜之 基準線很明顯地不在同一水平線上,會造成判讀上的困難,因此我們可以利用 Baseline 將圖譜之基準線拉到同一水平線上,如下圖 (B)所示.

Baseline 操作範例

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

圖(A):原始圖譜,因基準線不在同一水平線上,會造成判讀上的困難

Step2:由 [Processing] → [Correction] → [Baseline] 進入基 準線設定畫面,如下圖所示:

其中

1.上視窗為原始圖譜,下視窗為修改後圖譜之預視畫面

2. 圖上左上方為 Baseline 校正模式

line: 線性校正 (校正點間以直線連接)

spline: 抛物線校正 (校正點間以拋物線連接)

Step3: 當選定校正模式之後,使用者可利用滑鼠去拉上視窗之基準線,直到下視窗之預視圖符合我們所需為止,如下圖所示

圖(B):經 Baseline 修正後,基準線在同一水平線上,判讀容易

Smoothing (圖譜平滑設定)

Smoothing 的主要目的是將圖譜平滑化,如下圖(A)所示,若使用者認為圖譜雜訊會造成判讀上的困難,我們可以利用 Smoothing 將圖譜平滑化以方便判讀,如下圖 (B)所示.

Smoothing 操作範例

Step1: 由 [File] → [Open] 開啟圖譜, 如下圖所示

圖(A):原始圖譜, 在1500cm⁻¹~1800 cm⁻¹有雜訊存在

Step2:由 [Processing] → [Correction] → [Smoothing] 進入圖譜平滑設定畫面,如下圖所示

其中

1.上視窗為原始圖譜, 下視窗為修改後圖譜之預視畫面

2.圖上左上方為 method 為圖譜平滑模式

3. convolution width 為圖譜平滑程度 (5~25)數值愈大表平滑 程度愈大,但相對圖譜愈失真

Step3:當選定圖譜平滑模式校正模式及平滑程度之後,選擇 [Apply] 鍵觀察下視窗之預視圖,直到預視圖符合我們所需為 止

Step4: 若一切沒問題, 選擇 [OK]鍵即可得到完圖如下圖所示

圖(B):經 Smoothing 修正後,在1500cm⁻¹~1800 cm⁻¹之雜訊已被平滑 化,不復存在

<u>Noise Elimination (雜訊消除設定)</u>

Noise Elimination 的目的主要消除光譜圖特定區域內之雜訊 (若選定之區 域內有波峰存在亦會被消除),如下圖所示.

Noise Elimination 操作範例

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

圖(A):原始圖譜

Step2:由 [Processing] → [Correction] → [Elimination] 進 入雜訊消除設定畫面,如下圖所示

其中

 1.上視窗為原始圖譜,其圖上兩垂直線間即為雜訊消除區間;下 視窗為修改後圖譜之預視畫面

2.圖上左上方之波數為垂直線之位置

Step3:使用者可利用滑鼠去拉上視窗之垂直線,或直接填入垂直線 之位置,並按 [Execute]鍵,直到下視窗之預視圖符合我們所 需為止,如下圖所示

Step4: 若一切沒問題, 選擇 OK 鍵即可得到完圖如下圖所示

圖(B):經 Noise Elimination 修正後, 雜訊已被消除

Deconvolution (波峰解析設定)

Deconvolution 的目的主要作波峰解析消除,如下圖所示,因為波峰有加成性,因此有些波峰往往是由2個或2個以上的波峰所造成,我們可以利用 Deconvolution 將這些波峰加以釐清

Deconvolution 操作範例

Step1:由 [File] → [Open] 開啟圖譜,如下圖所示

圖(A):原始圖譜,我們認為是由3支波峰所造成

Step2:由 [Processing] → [Correction] → [Devonvolution] 進 入雜訊解析設定畫面,如下圖所示

其中

- 1.上視窗為原始圖譜,其圖上兩垂直線間即為雜訊消除區間;下 視窗為修改後圖譜之預視畫面
- 2. 圖上左上方 FWHM (Full width of half maximum)為最大半波 峰寬度

Step3:使用者直接填入 FWHM 之值,並按 [Apply] 鍵,直到下視窗 圖(B):經 Deconvolution 修正後,3 支波峰已被釐清

Step4: 若一切沒問題, 選擇 OK 鍵即可得到完圖如下圖所示

圖譜計算(Operations)

Arithmetic (波峰數學運算)

Derivatives (圖譜微分設定)

Arithmetic (波峰數學運算)

Arithmetic 的目的主要作波峰 Y 軸之數學運算,使用者可以對單一光譜圖 波峰作數學運算,亦可對兩光譜圖波峰作數學運算.下圖(A) 為一光譜圖,下圖 (B)則為圖(A)乘以 2 之結果.

Arithmetic 操作範例

I 單一波峰運算

Step2:由 [Processing] → [Operation] → [Arithmetic] 進入 波峰數學運算設定畫面,如下圖所示

1.上視窗為原始圖譜,下視窗為修改後圖譜之預視畫面

Step3: 若波峰欲從 75% 增至 100% 則計算式如下

 $1.0000 \times S_1 + 25.0000 = Memory#2$

 $(1.0000 \times 75\% + 25.0000 = 100\%)$

按 [Apply]鍵得預視圖譜, 如下圖所示

Step4: 若一切沒問題, 選擇 [OK]鍵即可得到完圖如下圖所示

II 兩波峰間運算

Step2:由 [File] → [Overlay] 開啟另一圖譜,與上一圖譜重疊

Step3:由 [Processing] → [Operation] → [Arithmetic] 進入 波峰數學運算設定畫面,如下圖所示

其中

Step3: 假設吾人欲以 S1 加上 S2 則公式計算如下

 $(1.0000 \times S_1 + 0.0000) + (1.0000 \times S_2 + 0.0000) = memory #2$

 $(1.0000 \times 75\% + 0.0000) + (1.0000 \times 75\% + 0.0000) = 155\%$

按 [Apply]鍵, 結果如下圖所示

Step4: 若一切沒問題, 選擇 OK 鍵即可得到完圖如下圖所示

Derivatives (圖譜微分設定)

Derivatives 的目的主要是將光譜圖作1~3次微分,形成1~3次微分圖譜,如下圖所示.

Derivatives 操作範例

Step2:由 [Processing] → [Correction] → [Derivatives] 進入 圖譜微分設定設定畫面,如下圖所示

1.上視窗為原始圖譜, 下視窗為修改後圖譜之預視畫面

2. 圖上左上方 Order 為圖譜微分次數

Interval 為微分區間 (dy/dx 之 dx)

Step3:當選定圖譜微分次數及微分區間之後,按 [Apply]鍵得預視 圖譜,如下圖所示

Step4: 若一切沒問題, 選擇 [OK]鍵即可得到結果,如下圖所示

波峰分析(Peak Process)

Peak Find (波峰搜尋) Peak Height (波峰高度) Peak Area (波峰面積) Peak Width (半波峰寬度)

Peak Find (波峰搜尋)

Peak Find 的目的主要是設定所要搜尋之特定波峰,如下圖所示

Peak Find 操作範例

Step2:由 [Processing] → [Peak Process] → [Peak Find] 進入 波峰搜尋基設定畫面,如下圖所示

Peak 為波峰搜尋模式

1. Top:以波峰為搜尋對像

2. Buttom:以波谷為搜尋對像

3. Both:以波峰及波谷為搜尋對像

Noise Level:雜訊參數,當波之高度超過雜訊參數之設限值為波峰,否則為雜訊

Step3: 當決定雜訊參數之後,按 [Apply]進入波峰決定畫面,如下 圖所示

Add:增加波峰 Delete: 刪減波峰 Print:列印結果 Add 及 Delete之用意在使使用者以手動方式決定波峰,當使用 者透過雜訊參數 (Noise level)仍無法得到欲得到之波峰,則可利 用 Add 或 Delete 以手動方式決定波峰

(A) Add (增加波峰)

如下圖所示,以滑鼠移動圖譜之直線到所欲增加波峰之位置後按 [Add]即可增加波峰

將垂直線移至 1946cm-1 處,按[Add]鍵

📈 Peak Find			? - 🗆 🔀
Memory-8			ОК
Wavenum %	T Parame	ters	
539.971 6.9	98837 <u>P</u> eak:	Bottom V Noise Level: 50	Cancel
702.926 -0.4	471155		Print
754.031 0.2	253495 Upp	er Limit 100 📃 Lower Limit -10 Apply	<u> </u>
1027.87 13	146776		Scale
1402.14 -0.	113324 1946.7	79 cm-1 58.1027	
1600.63 5.6	65571		Add
1946.79 58	1027	00	Delete
2925.48 -0.1	0833388	monorman and MMM Like in M	Delete
3024.8 -0.	10958 %T	50 	

(B) Delete(刪減波峰)

如下圖所示,以滑鼠指到所欲刪減波峰之位置後按 [Delete]即可 刪減波峰

將游標移至 539.97cm-1 處按 [Delete]鍵

Step4: 若一切沒問題, 選擇 OK 鍵即可得到完圖如下圖所示

Peak Height (波峰高度)

Peak Find 的目的主要是計算特定波峰之高度,亦可比較不同波峰高度之 比值,如下圖所示

Peak Height 操作範例

波峰高度畫面, 如下圖所示

P1, P2 分為兩支使用者指定之特定波峰 Base1, Base2 則為決定 P1, P2 高度之基準點 波峰高度計算如下

P1, P2, base1, base2 位置均由使用者決定

Step3:由 [Calculation Method] 進入波峰高度設定模式,如下圖所示

- 1. 使用者可於 baseline 選項中選擇單基準點 (1 point base)或 雙基準點 (2 point base)計算波峰高度
- 另外在計算上可採手動 (manual)或自動 (Auto)計算 手動 (manual) : P1, P2, base1, base2 位置均由使用者決定 自動 (Auto) : P1, P2, 由使用者決定, base1 及 base2 則由電腦 判斷
- 決定波峰高度設定模式之後,按 [OK]回到波峰高度畫面,如下圖 所示

由上圖波峰高度畫面我們得知 P1 高度為 1.173, P2 高度

為 0.4276; 且高度比 P1/P2=2.743, P2/P1=0.364

Peak Area (波峰面積)

Peak Find 的目的主要是計算特定波峰之面積,亦可比較不同波峰面積之 比值,如下圖所示

圖示: 2631cm⁻¹ 波~3152 cm⁻¹ 波峰面積為 58.5249; 1397cm⁻¹ 波~1497 cm⁻¹ 波峰面積為 28.3348

Peak Area 操作範例

Step2:由 [Processing] → [Peak Process] → [Peak Area] 進入 波峰面積畫面,如下圖所示

P1, P2 分為兩支使用者指定之特定波峰範圍 Range (base) 則為決定 P1, P2 面積之基準點 波峰面積計算如下

P1, P2, Range (base) 位置可由使用者決定

其中 面積計算模式有3種

另外在計算上亦有3種

- a. Ignore Under baseline Region (基準線下面積忽略不計)
- b. Subtract Under baseline Region (基準線下面積於以扣除)
- c. Add Under baseline Region (基準線下面積於以合併計算)

Under baseline Region

決定波峰面積設定模式之後,按 [OK]回到波峰面積畫面, 如下圖 所示

由上圖波峰面積畫面我們得知 P1 面積為 12.751 P2 面積為 1.9245; 面積比 P1/P2=6.6256 P2/P1=0.1509

Peak Width (半波峰寬度)

Peak Width 的目的主要是計算特定波峰半波峰寬度 (FWHM), 如下圖所示

Peak Width 操作範例

Step2:由 [Processing] → [Peak Process] → [Peak Width]進入 半波峰寬度設定畫面,如下圖所示

Xaxis(R),及Xaxis(L)為決定特定波峰半波峰寬度之基準線,使用者可利用滑鼠去拉上視窗之基準線

波峰相減(Subtraction)

波峰相減(Subtraction)基本上是 Arithmetic (波峰數學運算)其 中一項功能,因使用率極高,尤其是比較兩圖譜間之差異性, 因此在此專章說明.

圖 A

圖 B

Subtraction 主要是將兩圖譜相減,以比較其間之差異性

Subtraction 操作範例

先選擇欲相減之圖譜,將圖譜重疊,如下圖所示:

Step2:由 [Processing] → [Subtraction]進入波峰相減畫面,如下 圖所示

- 1. 上視窗為原始圖譜, 下視窗為修改後圖譜之預視畫面
- 圖左上方 [Factor]表原始圖譜(即 圖 A)之放大倍數; [Step]表 原始圖譜(即 圖 A)放大時每次增加之倍數[Exchange]表 圖 A 與圖 B 對調 (原來是 A-B 後來 B-A)

Step3: 選擇完 [factor]後, 按[OK]鍵相減後圖譜,如下圖所示

YAxis Conversion (圖譜Y軸單位轉換)

Spectra Manager 為一整合性軟體,因此不論是 UV/VIS(紫外光) 圖譜, FT/IR(紅外光)圖譜或是 FP(螢光) 圖譜皆可作 Y 軸單位轉換(%T, ABS, %R, KM....等)

Y 軸單位轉換操作範例 (%T →→ Abs)

Step2:由 [Processing] → [Y unit conversion]] 進入單位轉換畫面,如下圖所

Step3:選擇完所欲轉換之單位(Abs)後按[OK]鍵即可 經單位轉換,Y軸單位變為 Abs

WINDOW 視窗排列

Window 主要目的是排列已開啟之圖譜視窗,

其項目包括

重疊排列 (Cascade)

並列排列 (Title)

關閉所有圖譜(Close All)
Window (視窗)主要是對已開啟之圖譜視窗作適當之安排,當使用者同時開啟 數個圖譜,可利用 Window (視窗)作適當之排列,如下圖所示, Window (視窗)的 功能主要有 Cascade(重覆排列), Title(並列排列),以及 Close All(關閉所有圖譜)

Cascade(重覆排列)

Cascade(重覆排列)主要是對已開啟之數個圖譜視窗作 3D 排列,如下圖所示.

Title(並排顯示)

Title(並排顯示) 主要是對已開啟之數個圖譜視窗作堆疊排列,如下圖所示.

Close All (關閉所有圖譜)

Close All (關閉所有圖譜)主要是關閉所有已開啟之圖譜視窗,如下圖所示.

📇 Spect	ra Analysis				
<u>F</u> ile <u>V</u> ie	w <u>O</u> ther <u>H</u> elp				
🖻 🖬	5 Q. 🤋				
XY	(++ ++ ++)	$\Leftrightarrow \Leftrightarrow \not \in$	从匈从器		
	<u>k</u>	tt	ただ	-42	FFT
	- 🍽 🏢 🎼 🎊				
📇 Spect	ra Analysis				
Г Тта					
Ready					